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Full counting statistics and conditional evolution in a nanoelectromechanical system

S. D. Bennett and A. A. Clerk
Department of Physics, McGill University, Montréal, Québec, Canada H3A 2T8
(Received 11 August 2008; published 29 October 2008)

We study theoretically the full distribution of transferred charge in a tunnel junction (or quantum point
contact) coupled to a nanomechanical oscillator, as well as the conditional evolution of the oscillator. Even if
the oscillator is very weakly coupled to the tunnel junction, it can strongly affect the tunneling statistics and
lead to a highly non-Gaussian distribution. Conversely, given a particular measurement history of the current,
the oscillator energy distribution may be localized and highly nonthermal. We also discuss non-Gaussian
correlations between the oscillator motion and tunneling electrons; these show that the tunneling back-action
cannot be fully described as an effective thermal bath coupled to the oscillator.
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I. INTRODUCTION

The possibility to observe the quantum mechanics of a
macroscopic object has sparked significant interest in nano-
electromechanical systems (NEMS), which consist of a me-
chanical oscillator coupled to a mesoscopic conductor. In
recent experiments, the oscillator motion has been measured
with near quantum-limited precision using the conductor as a
detector' and cooling of the oscillator by quantum back-
action has been observed.* In these experiments it is the cur-
rent noise of the conductor (i.e., the second moment of cur-
rent fluctuations) that is used to measure position fluctuations
of the oscillator. The effect of the oscillator on the current
noise has been well studied theoretically, leading to new un-
derstanding of back-action and quantum dissipation in
NEMS.>!! However, much more information lies in the full
probability distribution of transmitted charge through the
conductor or the full counting statistics (FCS).'? In addition
to being of theoretical interest, FCS is an experimentally
accessible quantity and the third moment was recently mea-
sured in a tunnel junction.'® Still more information may be
gained by considering the conditional evolution: given a par-
ticular measurement history for the current, what can we say
about the state of the oscillator?

In this paper, we study the full statistics of a tunnel junc-
tion (or quantum point contact) coupled to a nanomechanical
oscillator, a system recently realized in experiment."> This
system is a prime candidate for measuring FCS in NEMS
since the intrinsic shot noise can dominate over other noise
sources, making it feasible to measure the higher moments.
Starting from a microscopic fully quantum model, we calcu-
late the FCS of tunneled charge as well as the conditional
evolution of the oscillator and find several surprises that
would not be apparent in a study of the noise alone. Despite
weak oscillator-conductor coupling, we find that the oscilla-
tor can strongly enhance the third and higher moments of the
FCS, leading to a markedly non-Gaussian distribution. This
results from long-lived energy fluctuations in the high-Q os-
cillator, which allow correlations between the oscillator mo-
tion and tunneling electrons to accumulate up to the ring-
down time of the oscillator, overwhelming the weak coupling
strength and dominating the FCS. Further, even though the
conductor couples linearly to the oscillator position, the os-
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cillator state conditioned on a particular measurement of cur-
rent can be highly localized in energy. Finally, we discuss
non-Gaussian correlations between the current and back-
action force on the oscillator that are not captured by treating
the tunnel junction as an effective thermal bath. These cor-
relations arise from the random momentum kicks imparted to
the oscillator by individual tunneling electrons, which cause
one-half of the back-action to be correlated with tunneling.
The non-Gaussian correlations lead to signatures in measur-
able quantities such as the current noise; thus, measuring the
current noise could provide a way to distinguish quantum
back-action from the effects of an equilibrium bath.

Note that FCS were studied previously in a very different
type of NEMS, a charge shuttle.!*!> Conditional evolution in
NEMS was studied using a quantum optics approach,'®!” but
these studies miss key features arising in our microscopically
derived model. The average current and current noise of the
NEMS studied here were addressed in Refs. 8—11; unlike
these works, we present an exact solution of the master equa-
tion and study the FCS.

II. MASTER EQUATION AND ITS SOLUTION

The Hamiltonian of the coupled system is H=H
+H\oaqs+H7p, where H . describes a harmonic oscillator of
mass M and frequency () including dissipation due to an
equilibrium thermal bath at temperature 7,.'® Electrons in
the leads are described by Hleads:Ea,kskczkcak—eViﬁ, where
¢ annihilates an electron in lead =L, R, V is the junction
bias voltage, and the operator /1 counts the number of tun-
neled electrons. Hy describes electron tunneling for the ex-
perimentally relevant case of weak oscillator-junction
coupling,3-!!

T+ €' X

Hp= > (Yichew +He), (1)
2mA

kk'

where A is the lead density of states, 7 describes the depen-
dence of the transmission phase on the oscillator position x,
and Y' is the raising operator associated with 1, e.g.,
[m,YT]=YT. We focus on an inversion symmetric system in
which 7 vanishes.’

We describe the system using a reduced density matrix
p(r) tracking the state of the oscillator and m, the number of
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tunneled electrons. In the weak tunneling regime of interest,
the off-diagonal (in m) elements of p decouple from the di-
agonal elements. Since our aim is to calculate the statistics of
m, we need only to consider the diagonal elements, p(m;?)
=(m|p(t)|m). Treating H; perturbatively and making a stan-
dard Markov approximation which requires eV>7{), we de-
rive a master equation for p(m;t).® Fourier transforming in
m, ﬁ()(;t)=22=_wei’(mﬁ(m;t), the equation reads

) i - Y D_. _ .
atp(X7t) == %[HO’p] - %[‘x’{p?p}] - ﬁ[)@[-xap]]

(e'X - 1){21)1
L=

2 7(7'0 + 71X) p( 79 + 7 X)
1
+2h[ToTl(pp—pp)+ [(ppx—xpp)] (. (2)

Here, H describes the coherent dynamics of the oscillator
and the total damping and diffusion coefficients are y=1y,
+y; and D=Dy+D,. The coefficients 7y, and D,
=(MyhQ/2)coth(fi)/2T,) are associated with the equilib-
rium bath (kz=1), while y, and D, describe back-action
damping and diffusion due to the tunnel junction. Taking the
electronic temperature in the leads to be much less than eV,19
these are given by yl=fn%/ 27M and D;=My,T;, where the
effective temperature due to the tunnel junction is 7,
=eV/2.8% Note that if we average over m (i.e., set y=0), Eq.
(2) reduces to the quantum Brownian motion master equa-
tion for an oscillator coupled to two effective thermal baths
consisting of the environment and the tunnel junction.'® Con-
versely, tracing over the oscillator degrees of freedom yields
the generating function for the FCS,

D(x:0) =t p(x:0)] = 2 X P(m;r), (3)

where P(m;t) is the probability that m electrons have tun-
neled in time interval 7. Note that the trace of p(¢) over all
degrees of freedom is Xt p(m;1)]=1.

The above model has been used to study the average cur-
rent and noise:;®!! here we present its exact solution and use
it to study FCS and conditional evolution. To work with Eq.
(2), we first express the reduced density matrix in its Wigner
representation,

1 N
W(x,p) = %f dy(x + y|plx — y>e—21)/p/ﬁ. )

In terms of the Wigner function, Eq. (2) may be written as
IW(,pix:t) = (Lo + LYW, (5)

where the evolution is described by two Liouvillian opera-
tors,

p i
Lg=- Max‘i'Msz&p-'- Y9y 'P“‘D‘?fz»"‘ (M= 1)I(1 +\x)?,

(6a)

PHYSICAL REVIEW B 78, 165328 (2008)

. d -p+D,# 2
£y=(ex—n)| NP2

q 3 Py (70 + T1%) 0, |,

(6b)

with the tunneling rate for the oscillator at x=0 given by I'
=720€V/ 27Tﬁ=2D17‘(2)/ hzﬁ. The Liouvillian operator £ de-
scribes the effectively classical evolution of the system: the
first line of Eq. (6a) corresponds to a classical Fokker-Planck
equation for the oscillator coupled to two effective equilib-
rium baths, the environment and the junction; the second line
describes tunneling as a classical Poisson process character-
ized by a rate I'() that depends on the instantaneous oscilla-
tor position x(z). In contrast, £, accounts for quantum cor-
rections to the effectively classical evolution. The
x-dependent terms involving vy, and D, in Eq. (6b) describe
conditional damping and diffusion; these terms represent
back-action that is correlated with tunneling. Conditional
back-action arises because each tunneling electron imparts a
random momentum kick to the oscillator, implying that the
momentum kicks are correlated in time with tunneling
events, and shows that the back-action of the tunnel junction
is not fully described as an effective equilibrium bath. This is
discussed in detail in Sec. V. Note that when we add the
back-action terms in L to those in L, we find that exactly
half of the total back-action is conditional (i.e., includes the
factor ¢'X). The other half of the back-action is uncorrelated
with tunneling and cannot be understood in terms of momen-
tum kicks imparted by tunneling electrons. We thus have the
surprising conclusion that even during periods where no
electrons tunnel, there is still back-action diffusion and
damping. Heuristically, even if no electrons tunnel, we none-
theless gain information about the oscillator and therefore
there must be back-action. Finally, the remaining terms in
Eq. (6b) are also quantum in nature and arise from the dif-
ference between two tunneling processes involving absorp-
tion or emission of a phonon of energy A(). In particular, the
last term «7ixd,W does not vanish when we trace over the
oscillator degrees of freedom and thus represents a quantum
correction to the average tunneling rate®® [cf. Eq. (11) be-
low]. The same correction is obtained from a direct calcula-
tion of the tunneling rate using Fermi’s golden rule.

Equation (5) may be solved exactly for the physical initial
conditions of a thermal oscillator state. Such a state is Gauss-
ian and remains Gaussian under Eq. (5) for all times. We also
take m=0 at time =0 since this is when we start counting
tunneled electrons. Thus, the Wigner function may be written
in the form

eboLVplx = DV, (p = )*=2V,, (=D (p-P) 2V, V,~V7,)

2mV,V, - V2, ’
()

where we have scaled all quantities by the natural units of
the zero-point motion of the oscillator, Ax0=\e"h/ 2M() and
Apo=VM#%L/2. The state is fully characterized at all times
by its means, x and p, its variances, V, and V, its covariance,
Vips and its normalization, e®. These six Gaussian parameters
depend on both y and ¢ and satisfy simple ordinary differen-

Wix,p;x:t) =
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tial equations which follow directly from Eq. (5). First, the
means satisfy

. 1)/ 2T, 1
x(x:t) = Qp X x+— || =2V, - =
dx(x:t) = Qp+ y (e )<x+)\>(mVx 2), (8a)

_ _ ; 2T _ 1 12
ap(x:1)=—Qx— yp+ y(e'X - l)[ﬁ—QlVXp(x+ X) - E:|’

(8b)

where we have again scaled the position and momentum by
Ax, and Ap, and defined the dimensionless coupling strength
N=Ax,7,/ 7. The y dependence of x and p encodes correla-
tions between the oscillator motion and m. For example, one
can easily show that the irreducible correlation between x
and the nth moment of m is ((xm")):(—i)”gn—x. Next, the vari-

ances and covariance (also scaled by Ax, and Ap,) satisfy

. 2T
31Vx(X;f) =29pr+ 7l(elX_ l)Vx<ﬁ_()le_ 1), (921.)

2T, 2T,
3V, (x;t) ==2QV,, - 2%\ V, - 20l 29\ V, - 20

. 2
_YI(EIX_I)(Vp_ﬁ_g(l-'-V)Z(p))a (9b)

. 2T,
atvxp(X;t) = Q(Vp - Vx) - ’nyp+ Y1 (e X— 1)pr EVX_ 1 >

(9¢)

where Ty=(%Q/2)coth(A/2T,). Again, the y dependence
of these parameters describes correlations between X2, pz, or
xp and moments of m. Finally, the parameter ¢ satisfies

dp= (e~ 1){r[1 + 2N+ N2+ V)] - %} (10)
and is directly connected to the FCS as will be discussed in
Sec. III.

Equations (8a), (8b), (9a)—(9¢), and (10) have simple ana-
Iytic solutions in the limit of long times and may be solved
numerically for all times to arbitrary precision. Before using
the equations to study the FCS and conditional evolution, we
emphasize an important difference from previous treatments
of conditional evolution in NEMS: the evolution of the vari-
ances is conditional, as seen directly from the y-dependent
terms in Eq. (9). This is in stark contrast to the standard
treatment where the variances evolve independently of
tunneling.'®!'7 This is partly due to the conditional back-
action diffusion in £, discussed above [cf. Eq. (6b)], which
implies that momentum fluctuations of the oscillator are cor-
related with fluctuations in m and leads to the conditional
terms in Eq. (9b). However, we also find conditional terms in
Eq. (9a) that arise from the classical part of Eq. (5) described
by L. This is because we start with the linear x dependence
of the tunneling amplitude in Eq. (1), and it follows that the
tunneling rate has both linear and quadratic x dependences,
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FIG. 1. (Color online) Main: P(m;f) at three times. We have
shifted m by its average (m(r)) and scaled by its standard deviation
0,,(1). Inset: oscillator enhancement of the variance (dashed) and
skewness (solid) of P(m;t) versus time. We have taken T)=T;
=10*Q, A=1073, 7,=0.2, and y,=107>Q). These values are based
on the experiment in Ref. 1, except that we decreased the intrinsic
tunneling strength 7, to operate in the tunneling regime and in-
creased the coupling strength \ to clearly illustrate our results. For
these values, the fractional change in the average current due to the
oscillator is N2({(x2))=0.02.

f(x):F[1+2)\x+)\2x2]—%. (11)

Standard treatments of conditional evolution neglect the qua-
dratic dependence, which in our case is inconsistent with the
starting Hamiltonian.?? We stress that the conditional (i.e., x
dependent) and unconditional (i.e., y independent) terms in
Eq. (9) appear at the same order in the coupling strength \;
there is no a priori reason to keep one effect and not the
other. The results presented below are contingent on the con-
ditional evolution of the variances.

III. FULL COUNTING STATISTICS

It follows directly from Eq. (3) that the generating func-
tion for the FCS is given by the Gaussian parameter ¢ via
®(y;t)=e?™X). From Eq. (10) we see that if the average and
variance of the oscillator were simply constants, then tunnel-
ing electrons would obey Poisson statistics with an effective

tunneling rate given by (I'(x)), obtained from Eq. (11). How-
ever, the oscillator position is correlated with tunneling elec-
trons; this correlation enters Eq. (10) through the x depen-
dence of X and V, and leads to deviations from Poisson
statistics. From Egs. (3) and (10), we obtain P(m;t), shown
at several times in Fig. 1. Even for weak coupling, i.e.,
N{{(x?)y<1, the oscillator can have a dramatic effect on
P(m;1) at what we call intermediate times, 1*<t=<1/ v, caus-
ing it to become highly non-Gaussian. Here,

. 1[{haQ)?
“~rler) (12)

and T=D/My is the net effective temperature of the oscilla-
tor due to both the tunnel junction and the thermal environ-
ment. We emphasize that in the relevant limit of a high-Q
oscillator, the time scale 1/vy is much larger than 1/I" and
thus many electrons have tunneled even for intermediate
times.
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The significant modification of the FCS is due to the
seemingly weak dependence of the current on x*> [cf. Eq.
(11)]. To see this, it is useful to consider the first few cumu-
lants of m. From Egs. (3) and (10), these satisfy (x is again
scaled by Ax)

I{m?)) = 9¢m) + 2TL20Com)) + NX(m))],  (13a)

I m?)) = (m) + 3TL2N[((xm)) + (Cem?))]
+ N[(Pm)) +(Pm?)) + (om)) T}, (13b)

where all of correlations depend on ¢. The first term in each
equation corresponds to Poisson statistics, in which all cu-
mulants would be equal to (m). Correlations of x and x> with
m emerge naturally in the cumulants due to the x dependence
of the tunneling rate in Eq. (11) because m(z)
:ff)dt’f‘[x(t’)]. As indicated in Eq. (13), this allows oscilla-
tor fluctuations to affect the variance and skewness of m;
since x and x? are positively correlated with m, the cumulants
will be increased by these correlations. Similar correlations
appear in the higher moments. These correlations can
strongly affect the cumulants due to the slow decay of energy
fluctuations in the oscillator, as we now discuss.

Consider Eq. (13a). From the x? term in I'(x), fluctuations
in x2 will lead to fluctuations in m. Thus, the last term in Eq.
(13a) leads to a term 2I°N*[{[(dt,dt>((x*(2;)x*(1,))) in the
variance. The factor \* is small due to weak coupling; how-
ever, the x? autocorrelation in the integrand is proportional to
an energy autocorrelation (up to insignificant rapidly oscil-
lating terms). This contribution initially scales as (7/#{2)?
and decays on the very slow time scale of the oscillator ring-
down time, 1/7. Thus, long-lived energy fluctuations in the
high-Q oscillator allow its influence to build up, eventually
overcoming the weak-coupling strength and dominating the
FCS. This enhancement occurs when the last term in Eq.
(13a) dominates the first, requiring I'(\*T/#)?/ y> 1. This
condition can be satisfied even when the oscillator contribu-

tion to the average current e{I'(x)) is small, as the ratio I'/ y
is typically large (e.g., I'/y~10% in Ref. 1). Further, this
same condition ensures *<<1/vy from Eq. (12), resulting in
non-Gaussian FCS over a wide range of times.

If the condition for enhancement is met, then the effect is
even greater for higher cumulants. For example, Eq. (13b)
contains a term proportional to ({x>(f)m>(¢))). This leads to
an oscillator-dependent term in the skewness similar to that
in the variance, with an additional factor of m resulting in an
extra factor of I'\%x? and an extra time integral. We obtain a
three-time x> autocorrelation which initially scales as
(T/#Q)? and decays on the time scale 1/, compensating for
the extra factor of weak coupling. In general, we find that the
maximum enhancement for the nth cumulant is roughly

{(m"(0))y ~ (CN*Tt/h Q)" (14)

for times t* <7<<1/+y. This can be seen directly from Eq. (11)
by assuming that fluctuations in m are dominated by x? fluc-
tuations for this range of times.

Figure 1 shows that P(m;1) is skewed only for intermedi-
ate times " <=1/, for short and long times the distribu-
tion is nearly Gaussian. The enhancement of cumulants com-
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r/0,

FIG. 2. (Color online) Joint distribution P(x,m;t) calculated for
the same times and parameters as in Fig. 1. We have shifted m by its
average (m(r)) and scaled x and m by their standard deviations,
o (1) and a,,(1).

pared to their Poisson values [i.e., ((m"(z)))=I"t with no
oscillator] is shown in the inset of Fig. 1. For short times, the
effects of the weakly coupled oscillator have not yet built up
and we obtain the Poisson statistics of the uncoupled tunnel
junction. For long times 7> 1/, the contribution to {({(m"))
from x? fluctuations simply scales as ¢ (and not as ¢*), as t is
now much longer than the lifetime of a typical oscillator
energy fluctuation. For long times the oscillator still en-
hances ((m")) by a factor (I'/ y)""'(\2>T/%Q)" over the Pois-
son value I't, but since each cumulant is proportional to f,
P(m;t) tends to a Gaussian.?! To estimate the time scale r*
for the buildup of enhanced cumulants, note that significant
enhancement will occur when the oscillator contribution to
the variance in Eq. (13a) is larger than the Poisson contribu-
tion. From Eq. (14) this requires (I'\?>7Tt/A€))%>>Tt, which
yields Eq. (12) for the time scale 7.

In the range of times where the FCS is strongly influenced
by the oscillator, P(m;t) is directly related to P(x). For a

thermal oscillator at temperature 7T, we have P(x)
=\/§e‘mx2/ﬂ with x in units of Ax,. Assuming that fluc-
tuations of x” are the dominant source of large m fluctua-
tions, and using Eq. (11), we obtain

AQm ]

(15)

Plm:1) o eXp[_ ATNT

for m>T't. This estimate describes the tail of P(m;r) very
well for times *<<t<<1/7.

IV. CONDITIONAL EVOLUTION

The effects of the oscillator on the FCS are the result of
correlations between x% and m; we can thus gain further in-
sight by studying conditional dynamics. The joint distribu-
tion P(x,m;t)={x|p(m;1)|x) is shown in Fig. 2. Consistent
with the FCS, for short and long times we see only small
correlations between x and m. P(x,m;f) is most striking at
times t* <t=1/v due to correlations between x> and m.

Equations (8a), (8b), (9a)—(9¢), and (10) may also be used
to find the conditional energy distribution, P(E|m;t)—given
a particular measurement history and value of m(z), what is
the oscillator’s energy distribution? In Fig. 3 we see that for
t*<t<<1/7v, the conditional energy distributions are highly
nonthermal and localized at the energy required to produce
the given value of m from Eq. (11), with width given roughly
by T. The ability to obtain information about the oscillator’s
energy distribution using a weakly coupled detector is some-
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FIG. 3. (Color online) Conditional distributions P(E|m;t) for
the same times and parameters as in Fig. 1. The thin line shows the
unconditional distribution (average over m).

what surprising and is another result of long-lived energy
fluctuations in the oscillator.

V. NON-GAUSSIAN CORRECTIONS TO THE EFFECTIVE
BATH MODEL

The effects discussed so far are captured by the effec-
tively classical Liouvillian operator £ of Eq. (5). Neglect-
ing the quantum corrections results in an “effective bath”
model, where the back-action effects of the tunnel junction
are treated as arising from a second thermal bath coupled to
the oscillator, and the oscillator is treated as a classical vari-
able which sets the instantaneous tunneling rate. However,
the conditional back-action damping and diffusion terms in
Eq. (6b) lead to non-Gaussian correlations between the junc-

tion current and back-action force operators I and F that are
not captured by the effective bath model. These arise because
even though tunneling is stochastic and imparts random mo-
mentum Kicks to the oscillator, each momentum kick occurs
at the same time that an electron tunnels. This is completely
missed in the effective bath model, as it treats the junction as
a thermal noise source independent of individual tunneling
events. For example, using Eq. (9) to calculate ({x*(t)m(z)))
in the long-time limit, we find an enhancement compared to
the effective bath model,

MmO g = )’%—g (t— ). (16)

This implies the existence of non-Gaussian correlations be-
tween the current and back-action force. A direct quantum

calculation of the non-Gaussian correlator ((F (tl)I:" (tz)f(t3)>>
using Keldysh path integrals following Ref. 12 leads to the
same non-Gaussian correction given in Eq. (16).

The non-Gaussian correlations may be understood in
terms of a simple model of quantum back-action. We de-
scribe the oscillator-independent tunneling current as a se-
quence of delta functions, I(t)=eX,_,8(t—t,), where the in-
tervals between the ¢, are exponentially distributed. The
back-action force of the junction is then taken to be F(z)
=37 &, 0(t-1,), where &, is a zero-mean random variable
describing the impulse imparted to the oscillator by the nth
electron. The same sequence of times {z,} appears in both I(z)
and F(r), reflecting the fact that back-action arises from the
action of individual tunneling electrons. If we then take
(&,E)=hT ] 7)*6,,, our simple model reproduces the non-
Gaussian correlations obtained from Egs. (8a), (8b), (9a)-
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(9¢), and (10); we also obtain the expected back-action dif-
fusion constant D;. From the size of &, we see that the
typical momentum kick imparted by a single tunneling elec-
tron is given by Ap~#7/ 7, and not by the Fermi momen-
tum. This value for Ap is consistent with the Heisenberg
uncertainty principle since the sensitivity of a position mea-
surement scales as Ax ~ 7,/ 7;. We thus have a simple picture
for the source of the conditional part of quantum back-
action: it arises from tunneling electrons imparting random
momentum kicks of size set by the uncertainty principle.
Again, we stress that this picture only accounts for the con-
ditional half of the back-action damping and diffusion; the
other half is completely uncorrelated with tunneling elec-
trons [cf. Eq. (6b) and the discussion thereafter]. We also
note that one can derive the conditional back-action terms in
Eq. (6b) directly from this simple model, from a correspond-
ing classical master equation in which each tunneling event
is associated with a random momentum kick.

The non-Gaussian correlations discussed above can in
principle be detected via the finite-frequency current noise in
the tunnel junction, S/ (w). This may be found from the time
dependence of ((m?)) using the MacDonald formula,?

©

S(w)= Zezwf dt sin(w?)d({(m*(1))). (17)

0

Note that the frequency-dependent current noise is obtained
from the particle current fluctuations only. In the single junc-
tion, tunneling is nonresonant and there is no place for
charge to build up in the system, so displacement currents
may be safely neglected.”> The time derivative of ((m?)) is
given in Eq. (13a), which shows that we need the full time-
dependent correlations ((x()m(z))) and (x*(t)m(1))) to cal-
culate the current noise. These correlations are calculated
simply by taking the y derivative of Egs. (8a), (8b), (9a)—
(9¢), and (10). The resulting equations are readily solved
exactly for the physical initial conditions in which the oscil-
lator is equilibrated with both the environment and the tunnel
junction, i.e., ((x2))={(p*))=2T in our units. The correlation
((xm)) leads to a peak at w={) in the noise that is very
accurately captured by the effective bath model. However,
the correlation ({(x?m)) leads to peaks at =0 and w=2) that
show signatures of the non-Gaussian correlations. This is
especially true in the limit y,/ y,>T,;/Ty> 1, where the non-
Gaussian correlations lead to a doubling of the current noise
peak at =0 and completely suppress the peak at w=2() as
shown in Fig. 4. This limit requires a back-action damping
rate much smaller than the intrinsic damping from the envi-
ronment and a back-action temperature much greater than
the temperature of the environment. The first of these condi-
tions is natural in experiments and the second has been
achieved. Note that we still require the intrinsic damping of
the oscillator to be small.

Measurements of S;(w) could thus be used to distinguish
the tunnel junction’s back-action on the oscillator from the
effects of a Gaussian uncorrelated noise source supplied by
an equilibrium bath. However, as seen in Fig. 4, in the same
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FIG. 4. (Color online) Contribution to the current noise spec-
trum near w=0 (left) and w=2€ (right) from to the correlation
{(x*m)). The full calculation including non-Gaussian corrections
(solid) is compared to the results from the effective bath model
(dashed). The contributions are normalized by the frequency-
independent shot-noise background. We have taken Ty=%€/2, T,
=100AQ, A=0.01, 7,=0.2, and y,=1073Q in order to approach the
limit where the non-Gaussian signatures are maximized.

limit where the signatures are relatively large, the peak
heights themselves are very small compared to the
frequency-independent shot-noise background. For this rea-
son, detecting these signatures in the current noise would
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pose a formidable challenge. Further thought will be devoted
to more efficient strategies to detect the non-Gaussian corre-
lations we have identified.

VI. CONCLUSIONS

We have studied the statistics of the experimentally rel-
evant NEMS of a tunnel junction coupled to a mechanical
oscillator. We have shown that even if the coupling is very
weak, long-lived energy fluctuations in the oscillator allow it
to dominate the FCS. The oscillator-induced enhancement of
the third moment of the FCS could be observed up to mea-
surement times near 1/, well within reach of current experi-
ments. We have also shown that the effective bath model is
not sufficient to fully describe the effects of the tunnel junc-
tion on the oscillator. Half of the back-action is conditional
as a result of the random momentum kicks imparted to the
oscillator by tunneling electrons, and this leads to non-
Gaussian correlations with signatures in the finite-frequency
current noise.
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